
March 2022 Mock COMPUTER SCIENCE
Paper 1

Revision

pages

1.1 Systems

Architecture

1.1.1: Architecture of the CPU

What actions occur at each
stage of the fetch-execute cycle.

The role/purpose of each
component and what it
managers, stores, or controls
during the fetch-execute cycle.

The purpose of each register,
what it stores (data or address).
The difference between storing
data and an address.

Purpose of the CPU: (The fetch-execute
cycle)
Common CPU components and their functions
(ALU, CU, cache, registers)
Von Neumann architecture (MAR- Memory
Address Register), MDR (Memory Data
Register), Program Counter and Accumulator.

Pg 2-3

1.2 Memory

and Storage

1.2.1: Primary Storage

(Memory)

Why computers have primary

storage (how this usually

consists of RAM/ROM).

The difference between RAM

and ROM. The purpose of RAM,

ROM, Virtual memory.

The need for primary storage
RAM, ROM, Virtual memory

Pg 6-7

1.2.2 Secondary Storage

Why do computers have

secondary storage?

Differences between each type

of storage device/medium.

Compare

advantages/disadvantages for

each storage device.

Common types of storage

• Optical

• Magnetic

• Solid state

Suitable storage devices
The advantages and disadvantages of different
storage devices and storage media relating to
these characteristics. (Capacity, speed,
portability, durability, reliability, cost)

Pg 8-9

1.2.3: Units

Why data must be stored in

binary format.

Calculate required storage

capacity for a given set of files.

Calculate file sizes of sound,

images and text files.

Sound file size = sample rate x

duration (s) x bit depth image

file size = colour depth x image

height (px) x image width (px)

text file size = bits per character

x number of characters

The units of data storage; bit, nibble, byte,
kilobyte, megabyte, gigabyte, terabyte,
petabyte).
How data needs to be converted into a binary
format to be processed by a computer.
Data capacity and calculation of data capacity
requirements.

Pg 11

 1.2.4: Data Storage Numbers: Pg 12-20

Conversion of any numbers in

these ranges to another number

base.

The differences between and

impact of each character set.

The effect on an image size and

quality when changing colour

depth and resolution.

• Convert denary to binary and vice

versa.

• Binary addition

• Convert denary to hexadecimal

numbers and vice versa.

• Binary shift

Characters:

• Use of binary to represent characters

• Character set

• ASCII

• Unicode

Images:

• Images are represented by pixels, in

binary

• Metadata

• Effect of colour depth and resolution

Sound

• How sound can be sampled and stored

in digital form

• The effect of sample rate, duration

and bit depth on (the playback quality,

the size of a sound file)

 1.2.5: Compression

Advantages and disadvantages

of each type of compression.

Effects on the file for each type

of compression.

Need for compression.
Lossy and Lossless compression

Pg 21

1.3 Computer

networks,

connections

and protocols

1.3.1: Networks and topologies

The tasks performed by each

piece of hardware.

DNS (Domain Name Server’s

role in the conversion of a URL

to an IP address.

Types of networks (LAN, WAN)
Factors that affect the performance of
networks.
The hardware needed to connect stand-alone
computers into Local Area Networks.
The internet as a worldwide collection of
computer networks.

Pg 23-25

 1.3.2: Wired and wireless

networks, protocols and layers

Compare benefits and

drawbacks of wired versus

wireless connection.

The principle of encryption to

secure data across network

connections.

That different types of protocols

are used for different purposes.

Modes of connection (wired- ethernet),
(wireless- wifi, Bluetooth)
Encryption
IP addressing and MAC addressing
Standards
Common protocols
(TCP/IP, HTPP, HTTPS, FTP, POP, IMAP, SMTP)

Pg 28-32

1.4 Network

Security

1.4.1: threats to computer

systems and networks

Forms of attack (malware, social engineering
brute force attacks, denial of service attacks,

Pg 34

Threats posed to

devices/systems.

data interception and theft, the concept of
SQL injection).

1.4.2: Identifying and preventing

vulnerabilities

Understanding of how to limit

the threats posed in 1.4.1.

Understanding methods to

remove vulnerabilities.

Common prevention methods (penetration
testing, anti-malware software, firewalls, user
access levels, passwords, encryption, physical
security).

Pg 35

1.6 Ethical,

legal, cultural

and

environment

al impacts of

digital

technology

1.6.1: Ethical, legal, cultural and

environmental impact

Technology introduces ethical,

legal, cultural, environmental

and privacy issues.

The purpose of each piece of

legislation and the specific

actions it allows or prohibits.

Features of open source and

proprietary.

Impacts of digital technology on wider society.
(ethical, legal, cultural, environmental, privacy)
Legislation relevant to Computer Science. (The
Data Protection Act, Computer Misuse Act,
Copyright Designs and Patents Act, Software
licenses (is open sources and proprietary)

Pg 40-44

Paper 2

2.1.1

Computational

thinking

Understanding these principles

and how they are used to solve

problems

Principles of computational thinking

• Abstraction

• Decomposition

• Algorithmic thinking

Pg 47

2.1.2 Designing,

creating, and

refining

algorithms

Produce simple diagrams to

show:

• The structure of a

problem

• Subsections and their

links to other

subsections

Identify the inputs, processes, and outputs
for a problem

• Structure diagrams

• Create, interpret, correct,

complete, and refine algorithms

using:

• Flowcharts

Pg 49-53

• Complete, write or

refine an algorithm using

the techniques listed

• Identify syntax/logic

errors in code and

suggest fixes

• Create and use trace

tables to follow an

algorithm

• Reference language/high-level

programming language

• Identify common errors

• Trace tables

2.1.3 Searching

and sorting

algorithms

Understand the main steps of

each algorithm

Understand any pre-requisites of

an algorithm

Apply the algorithm to a data set

Identify an algorithm if given the

code

Standard searching algorithms:

• Binary search

• Linear search

Standard sorting algorithms:

• Bubble sort

• Merge sort

• Insertion sort

Pg 54-60

2.2.1

Programming

fundamentals

Understanding of each

technique

Recognise and use operators

The use of variables, constants, operators,
inputs, outputs and assignments

The use of the three basic programming
constructs used to control the flow of a
program:

• Sequence

• Selection

• Iteration (count- and condition-

controlled loops)

The common arithmetic operators

The common Boolean operators AND, OR
and NOT

Pg 61-65

2.2.2 Data

types

Ability to choose suitable data

types for data in each scenario

Understand that data types may

be temporarily changed through

casting, and where this may be

useful

The use of data types including:

• Integer

• Real

• Boolean

• Character and string

• Casting

Pg 66

2.2.3 Additional

programming

techniques

Ability to manipulate strings,

including:

• Concatenation

• Slicing

Arrays as fixed length or static

structures

Use of 2D arrays to emulate

database tables of a collection of

fields, and records

The use of basic string manipulation
The use of basic file handling operations:

• Open

• Read

• Write

• Close

The use of records to store data

The use of SQL to search for data

The use of arrays (or equivalent) when
solving problems, including

Pg 67-74

The use of functions

The use of procedures

The use of the following within

functions and procedures:

• local variables/constants

• global

variables/constants

• arrays (passing and

returning)

SQL commands:

• SELECT

• FROM

• WHERE

Be able to create and use

random numbers in a program

both one-dimensional (1D) and two-
dimensional arrays (2D)

How to use sub programs (functions and
procedures) to produce
structured code

Random number generation

2.3.1 Defensive

design

Understanding of the issues a

programmer should consider

ensuring that a program caters

for all likely input values

Understanding of how to deal

with invalid data in a program

Authentication to confirm the

identity of a user

Practical experience of designing

input validation and simple

authentication (e.g. username

and password)

Understand why commenting is

useful and apply this

appropriately

Defensive design considerations:

• Anticipating misuse

• Authentication

• Input validation

 Maintainability:

Use of sub programs

Naming conventions

Indentation

Commenting

Pg 78-79

2.3.2 Testing The difference between testing

modules of a program during

development and testing the

program at the end of

production

Syntax errors as errors which

break the grammatical rules of

the

programming language and stop

it from being run/translated

Logic errors as errors which

produce unexpected output

The purpose of testing

Types of testing:

• Iterative

• Final/terminal

Identify syntax and logic errors

Selecting and using suitable test data:

• Normal

• Boundary

• Invalid/Erroneous

• Refining algorithms

Pg 80

Normal test data as data which

should be accepted by a

program without causing errors

Boundary test data as data of

the correct type which is on the

very edge of being valid

Invalid test data as data of the

correct data type which should

be rejected by a computer

system

Erroneous test data as data of

the incorrect data type which

should be rejected by a

computer system

Ability to identify suitable test

data for a given scenario

Ability to create/complete a test

plan

2.4.1

Boolean Logic

Knowledge of the truth tables

for each logic gate

Recognition of each gate symbol

Understanding of how to create,

complete or edit logic diagrams

and truth

tables for given scenarios

Ability to work with more than

one gate in a logic diagram

Simple logic diagrams using the operators
AND, OR and NOT

Truth tables

Combining Boolean operators using AND,
OR and NOT

Applying logical operators in truth tables to
solve problems

Pg 82-83

2.5.1 Languages Knowledge of the truth tables

for each logic gate

Recognition of each gate symbol

Understanding of how to create,

complete or edit logic diagrams

and truth tables for given

scenarios

Ability to work with more than

one gate in a logic diagram

Characteristics and purpose of different
levels of programming
language:

• High-level languages

• Low-level languages

The purpose of translators

The characteristics of a compiler and an
interpreter

Pg 84

2.5.2 The

Integrated

Development

Environment

(IDE)

Knowledge of the tools that an

IDE provides

How each of the tools and

facilities listed can be used to

help a programmer develop a

program

Common tools and facilities available in an
Integrated Development Environment (IDE):

• Editors

• Error diagnostics

• Run-time environment

• Translators

Pg 85

Practical experience of using a

range of these tools within at

least

one IDE

